D-A284 393 | |
A o @

ARMY ResearcH LABORATORY

Distributed Heterogeneous Visualization,
Bop and Bop View

Jerry A. Clarke

= o X, 2 RS A i % e 2R B i = o i e
R O R R S R A S SR L,
SRS b .,_,,.::.<;3.-. R R \ %.;;?; IR ’/,;x‘ ,:(54 e e S 3\,;:{ },:.,.f,};;:/.}::;,ﬁg;‘_: S i}“ Ry
V5 > X SRR 2% SOOI LA

prepared by

3160 Fairview Park Drive FLECTES
Falls Church, VA 22042 SEp 1 41994 % /k
o

Computer Sciences Corporation E D 4 E bt

F

under contract

DAALO3-89-7C-0088

% %4— 29735
AV

LA v o
E AN .

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT retum it to the originator.

Additional copies of this report may be obtained from the National Technical information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade hames or manufacturers’ names in this report does not constitute
indorsement of any commercial product.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this coliection ai information s esnmau.va 10 average 1 hour per rtwom including the time for FEVIEWING INSTrICUIONS, SEATChingG Exntling data soutces,
gathening and g the data 'g the coitection of » Send co rding ths burden estimate of any Other s3pect of thn
coltection of information, including wggemons tor u-ducmg this bwden 0 Wah Ten Services, Due«oule or 1ntOrmation Operstiom and Reports, 1214 jetferon
Davn Highway, Suite 1204, Arlington, VA 22102-4302. and 10 the Othce of Mu\oqemem and Budget, Paperwork Reduction Project (0704-0188), Washi=gton, 0C 20503

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Progress, September 1992 - October 1993

5. FUNDING NUMBERS

, &Ng COMp g & L

4. TITLE AND SUBTITLE
Distributed Heterogencous Visualization Bop and Bop_View
C: DAAL03-89-7C-0088

6. AUTHOR(S)

Jerry A. Clarke

8. PERFORMING ORGANIZATION

| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

Computer Sciences Corporation Amy High Performance Computing
3160 Fairview Park Drive Rescarch Center, University of Minnesota
Falls Church, VA 22042 1100 Washington Ave, South

Minneapolis, MN 55415

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Amy Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

0. SPONSORING / MONITORING
AGENCY RZIPORT NUMBER

ARL-CR-172

11. SUPPLEMENTARY NOTES
The Point of Contact for this report is Harold J. Breaux, U.S. Army Research Laboratory, ATIN: AMSRL-CI-A,
Aberdeen Proving Ground, MD 21005-5067,

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

e ——
13. ABSTRACT (Maximum 200 words)

With the increased use of parallel and super computers in scientific computing, the size of datasets that need to be
visualized can easily reach into the gigabyte range. Even by utilizing data reduction techniques such as isosurface
generation, scenes containing hundreds of thousand or millions of polygons are common. Standard techniques of data
visualization quickly become overwhelmed and too time consuming to be practical.

New methods and utilities need 10 be developed to handle these massive datasets. Bop (Bag - O - Polygons), Bop_View,
and associated utilitics arc an attempt o use distributed and parallel techniques to ease the processing of these datasets.

Bop is a data format designed for large number of polygons, A library of routines is provided for reading and writing
this data to disk files. Additional routines allow this polygonal information to be shared across heterogeneous architectures.
Finally, a application called Bop_View is provided o efficiently display the resulting information.

14. SUBJECT TERMS 15. NUMBER OF PAGES
19
visualization, distributed computing, computers, polygons 16. PRICE CODE
7. SECURITY CLASSIFICATION |18, SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prewcnbed by ANSI St 739-18
298-102

INTENTIONALLY LEFT BLANK.

ii

TABLE OF CONTENTS

Page
LIST OF FIGURES . . oottt ittt e e e e e e e e e e e v
LISTOF TABLESottt ettt e e e e e e e v

INTRODUCTION ... ittt ittt e e et e 1

SUBROUTINES ittt it e et s e i e e 10
REFERENCES it it ittt e sttt 15

DISTRIBUTION LIST ittt e e aaan 17

ccesion For \

| Uoannouzod
Jisthcation
Tt LI
By

Dist-ihystion |

v 1
ARy Doeas

— i —-

jii

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

Figure Page
L ABopfile e e e 2
2. Bop View: Anapplicationttt oninann 5
3. Multiple command input streams give Bop_View flexibility 6
4. Typical Bop View applicationttt iiiiiiinenenernnn. 7

LIST OF TABLES
Table Page
1. Bop View Usagettt nnanns 8

INTENTIONALLY LEFT BLANK,

vi

1. INTRODUCTION

Three major items are described in this report: 1) the Bop data format, 2) subroutines for accessing
disk files and networked polygons, and 3) Bop_View. Bop_View is written using the subroutine interface.
The entire system is designed with the assumption that not all of the data may fit in physical memory.
Therefore, there are options to handle this situation as it arises. Other utilities can be developed that
utilize the networkability of the system and the simplicity of the data format interfaces. Bop p3d catis
an example of a utility that utilizes the subroutine interface to convert Plot_3D grids and solutions into
a graphical format that can then be viewed with Bop_View. In a similar manner, a user may customize
the system to deal with a specific data format or data location (data on a supercomputer, visualization on
a workstation).

At the heart of the system is the Bop format. It is a simple, non-indexed binary polygon format.
BRasically, all of the information needed to render a polygon is contained within each polygon and a global
header. By using a non-indexed format, all of the verticies need not be in memory at the same time. A
header (actually at the end of the file) contains global minimum and maximum information about the
entire polygon set. A Bop file is shown in Figure 1.

Each Bop file polygon reserves enough space for a global maximum number of verticies, even though
it may not use them all. This global maximum is set at the time of file creation. This allows utilities to
quickly move any polygon in the dataset via the Unix seek system call.

Bop files are not created or read directly, rather they are accessed through a set of library calls
contained in libhop.a. The function contained in this library are as follows:

Bop Ptr *bop_open();
void bop_close();
Bop_Polygon *bop_read();
int bop_write();
void bop_clear();

int bop_set();

Vertex 3

int

float
float
float

int

float
float
float

long
long
float
float

Polygon 1 Polygon 2
Vertex 2 Vertex 3

Vertex 1

Vertex 1

number_of vertices;

X, Y, Z, scalar;

X,Y, z, scalar; Polygon 1
X, ¥, Z, scalar;

number_of_verticies;

X, ¥, Z, scalar;

X, Y, Z, scalar; Polygon 2
X, ¥, Z, scalar;

total_verticies;

total_polygons;

xmin; ymin, zmin, scalar_min; Global Information
Xmax, ymax, zmax, scalar_max;

Figure 1. A _Bop file.

Vertex 2

bop_open() and bop_ciose() are used to access the disk files. A structure pointer containing necessary
information for future access is returned by bop_open(). This structure pointer is then passed to all other
functions. bop_write() appends polygons to the end of the Bop file while bop_read() retums an array of
these polygon<. bop_clear() is used to delete polygons from an existing file. bop_set() is used to set the
global me* .mum number of verticies per polygon and to set the current read or write position. There is
also a function, bop_open_lock(), which opens a file and also locks it using Unix file locking facilities.
This is useful when several Unix processes need to access the same file. Anexample of using this library
is given in the file bop_test.c. All routines and type declarations are declared in bop.h.

2. DISTRIBUTED PROCESSING

A library of communication routines known as MRS (Message Relay System) provides the basic
connection between processes dealing with Bop information. MRS allows clients and servers to
communicate across TCP/IP, shared memory, or Unix FIFO special file through a consistent abstraction.
libbop_mvrs.a contains routines that allow processes on the same processor or different architectures to send
and receive polygon information and messages. eXtemal Data Representation (XDR) is utilized to allow
different intemal binary formats to be accommodated. These routines are a superset of the libbop.a
routines; this library can be used to read and write files as well as communicate between processes.

Routines in libbop_mrs.a are as follows:

Bop_Ptr *bop_mrs_open()
Bop_Ptr *bop_open_file()
Bop Ptr *bop_open_tcp()
void bop_mrs_close()
Bop_Polygon *bop_mrs_read()

int bop_mrs_write()

int bop_mrs_set()

void bop_mrs_clear()

int bop_mrs_msg_send()
int bop_mrs_msg_set()

The libbop_mrs.2 routines are similar to the routines in libbop.a and are prototype in bop_mrs.h.
These routines communicate on a structure known as a Bop-O-Gram. This sends polygons in packets of

BOP_O_GRAM_MAX_POLYS polygons (currently defined as 1000). This is the maximum polygons in
a packet; if less are needed, less are sent.

In addition to polygon information, messages can be sent. bop_mrs_msg_set() takes the address of
a dispatch routine to call when a message is received. bop_mrs_msg_send(} is used to actually send the
message. The message is a NULL terminated ASCII string and the meaning of the messages is
application defined.

All messages and polygon packets sent through a connection established via bop_mrs_open_tcp() (the
preferred interface) are transparently converted to XDR data. This allows architectures with different
intemnal binary representations to efficiently share information. The TCP/IP conneciions do not use
Remote Procedure Calis (RPC) and thus avoid the associated overhead.

3. BOP_VIEW: AN APPLICATION

Using the previously discussed subroutines, Bop_View was developed to aid in the visualization of
Bop information. Bop View is an X-window Motif application that allows polygonal information to be
viewed on several different devices. Using "mixed mode” programming techniques, Bop_View will take
advantage of SGI Graphics Language (GL) if it is available. Otherwise, the polygons are rendered to an
X-window, SGI RGB file, a BRL-CAD pix file, or a Postscript file. (See Figure 2.) Because Bop View
utilizes XDR for network communications, networked polygons and commands need not originate from

the same machine architecture. Bop_View cumrently executes oi1 Silicon Graphics and Sun workstations.

Bop_View allows users to access files from disk or to wait for polygons to come across the network.
Objects can be interactively rotated, translated, and scaled. The minimum and maximum cutoff for scalar
values can be changed to highlight a selected range of interest. The image can also be rendered to a file
in a number of different formats, and the Bop file can be saved to a local file. There are options that
allow Bop View 1o discard polygons once they are rendered; this allows an unlimited number of polygons
to be rendered to the same scene.

Bop_View uses multiple command input streams for flexibility (Figure 3). The user can use the
Graphical User Interface or send commands across the network. In this manner, Bop_View can be used
interactively or from a Unix shell script. Polygons can be read from disk files or sent across the network

4

oy

FOWRT,

.

R

raes’

ORI I

I. subwindow

\'
¥

Xor(

Controls
‘nu Bar to Access Other Functions

and Maximum

mianum

Range M

I'ile Chooser

M

o View: An apphcaton.

5

Fipunre

Hardcopy File

Bop Disk Files

Figure 3. Multiple command input streams give Bop View flexibility,

and the current set of polygons can be saved to a disk file. In addition, graphical output can be directed
to the X or GL subwindow and/or a hardcopy file. Formats for this hardcopy file include BRL-CAD pix,
Silicon Graphics rgb, and color postscript.

To deal with large number of polygons, Bop_View allows the user to discard polygons afier they are
drawn. This allows thousands or millions of polygons to be rendered to a scene regardless of available
physical memory. By utilizing composite Z buffer techniques, output is directed to the graphical
subwindow and a hardcopy file.

BIG is a parallel isosurface generator (see BIG documentation) that runs on scalar, vector, and parallel
machines such as the Kendall Square KSR-1. An interface to B/IG has been developed that utilizes the
libbop_mrs routines to output information directly to Bop_View. Huge datasets are processed on the KSR
in parallel and the resulting polygons are received on the workstation. Ttus information can be rendered
to the screen, rendered to a file, and/or saved as a Bop file for later analysis.

Other Bop Utilities

=

TCP/IP

KSR-1 Silicon Graphics
or
X Terminal

Figure 4. Typical Bop View application.

Some other utilities that aid in the use of the Bop format are as follows:

bop_stat

bop_cat

bop_p3d_cat

Commands may be issued through the GUI or by using the command:

prints the header information

from a Bop file.

puts Bop polygons into the network

representation where they can be

received by Bop_View.

converts a Plot_3D grid and solution
into Bop network polygons where they

can be received by Bop View.

bop_view_cmd command_string [options]

Table 1. Bop_View Usage

snve o

s

Command

— e

GUI Menu Item

Effect

& | V—

Ambient {0.0 - 1.0] Preferences-Lighting-Ambient Sets the ambient
reflectance
J Diffuse {0.0 ~ 1.0} Preferences-Lighting-Diffuse Set the diffuse
| reflectance
Draw Redraw Button Draws all currently
saved polygons
Delete File-Delete All Clears all save polygons
from memory
File-Exit Exits

Exit
a Light [0.0-1.0 0.0-1.0 0.0-1.0}

Preferences-Lighting-Direction

Sets the light source
direction

Open File-Open File Reads in a Bop disk file

Passthru Preferences-Other-Auto Print Passthru Causes any incoming
networked polygons to
be rendered to hardcopy
as well as graphical
subwindow

Print Print Button Renders all saved
polygons to hardcopy

Reverse Edit-Reverse Normals Reverses the normal
vectors on all saved
polygons.

L e —— ey S S Ss
8

Table 1. Bop_View Usage (continued)

H Command GUI Menu Item Effect

Rotate [0.0 — 360 0 — 360 0 — 360] | Left Mouse Button in Subwindow Sets rotation

Save filename File-Save File Writes all saved
polygons to Bop disk
file

Translate (x y z] Middle Mouse Button in Subwindow Sets translation

Scale [value] Right Mouse Button in Subwindow Sets scale factor

Update Automatic Updates GUI and
subwindow

System command none Executes the command

from inside Bop_View

Set Auto_Range [0 | 1]

Preferences-Other-Auto Range Update

If incoming polygons
are outside the existing
X, Y. z Or scalar range,

the range is updated

Set Auto_Redraw [0 | 1]

Preferences-Other-Auto Redraw

If set off, the user must
issue a "Draw"
command. Useful for
large number of

polygons.

Set Auto_Save [0]1]

Preferences-Other-Auto Save Polygons

If set off, polygons are
cleared from memory
once they are rendered

Set Data_Range [min max]

Scalar Range Button or Color Data Sliders

Sets min and max for
scalars

Set Show-Domain Preferences-Other-Show Domain Draws an outline of the
current range
Set Light_On Preferences-Lighting-Light On Objects are lighted

Set Format [pix | sgi | ps]

Preferences-Other-Print File Format

Sets format for
hardcopy

Set X_Range [min max]

X Range Button

Sets min and max for X

Set Y_Range [min max]

Y Range Button

Sets min and max for Y

Set Z_Range {min max]

Z Range Button

Sets min and max for Z

4. SUBROUTINES

void
bop_clear(Bop_Ptr *bp)
Deletes all of the polygons from a Bop file and resets the header information.

void

bop_close(Bop_Ptr *bp)

bop_mrs_clbse(Bop-Ptr *bp)
Closes a Bop file.

Bop_Ptr *
bop_open(char *filename)
bop_mrs_open_file(char *filename)
Creates a new Bop file or opens an existing file for appending.

Bop_ Pu *
bop_open_lock(char *filename)
Similar to bop_open except the file is also locked via fenlt(2).

Bop_Polygon *

bop_read(Bop_Ptr *bp, int npoly)

bop_mrs_read(Bop_Ptr *bp, int npoly)
Reads up to npoly polygons from a Bop file. Returns a pointer to the first polygon or NULL on
an error. Do not increment the pointer directly, rather use;: BOP_NEXT_POLY (bp, poly_ptr).
The space for these polygons is allocated via calloc(). The application is responsible for freeing
this space.

int

bop_set(Bop_Ptr *bp, int what, int value)
bop_mrs_set(Bop_Ptr *bp, int what, int value)

10

Sets state of a Bop file. Valid values for "what” are BOP_CUR_POLY OR BOP_VPP (verts per
polygon). Setting BOP_CUR_POLY positions the Bop file to that polygon (zero based) while
setting BOP_VPP sets the maximum verticies per polygon. This may only be set before any
polygons have been written to the Bop file.

int

bop_write(Bop_Polygon *bpoly, int npoly, Bop_Pua *bp)
Writes npoly polygons pointed to by bpoly to the Bop file. Use BOP_NEW_POLY(bp, npoly)
to allocate space for new polygons.

Bop_Pir *

bop_mrs_open_tcp(char *hostname, int port_num)
Opens a TCP/IP connection on port_num. If port_num is zero, a unique number is generated
using the user’s UID; this is the preferred method.

Bop_Ptr *

bop_mrs_open(MRS_NODE *node)
Opens a connection on an existing MRS node. This allows the user to change the defaults of the
connection such as size and location of data buffer. This is not recommended without a detailed
knowledge of MRS.

void
bop_mrs_msg_call(Bop_Ptr *bp, char *data)
Sends the NULL terminated string as a message to the connection described by *bp.

int

bop_mrs_msg_set(Bop_Ptr *bp, void (*msg_routine)())
Sets the subroutine to call when bop_mrs_read() receives a message instead of polygon
information. The subroutine is called with a char pointer that points to the string which passed
to bop_mrs_msg_send().

11

#include <bop_mrs.h>
/* Write 2 triangles as a Bop-O-Gram */

main(argc, argv)
int argc;
char *argv(l
{
int i, j, n_triangles = 2,
float xstart = 0.0, ystart = 0.0, zstant = 0.0;
double atof();
Bop_Polygon *bpoly, *bpoly_start; /* Polygons */
Bop_Ptr *hp; /* Bop_file Pointer */
if(arge < 2){
fprintf(stderr, "Usage: %s hostname\n", argv{01);
exit(0);
}
if(arge > 2){

xstart = atof(argv[2]);
ystart = atof(argv[3});
zstart = atof(argv[4));
}

fprint(stderr, "Connecting to %s\n", argv([1]);
bp = bop_mrs_open_tcp(argv{1], 0); /* Choose port # based on UID */
bop_mrs_set(bp, BOP_VPP, 3); /* Set Verts/Poly for new files*/
bpoly_start = bpoly = BOP_NEW_POLY (bp, n_triangles);/* Allocate New Polys */
for(i=0; i < n_triangles; i++){
bpoly->nvert = 3;
bpoly->vent[0].x = xstart + i,
bpoly->vert[0).y = ystart + 0.0;
bpoly->vent[0).z = zstart +i; /* Data for vertex 1 */
bpoly->vert[0).data = 10.0 * i;

12

bpoly->vert[1}.x = xstart +i + 1;

bpoly->vent[1}].y = ystart + 0.0;

bpoly->vert{1].z = zstart + i; /* Data for vertex 2 */
bpoly->vert{1].data = 10.0 * (i + 1.0);

bpoly->vent[2].x = xstart + i;

bpoly->vent[2].y = ystart + 1.0;

bpoly->vert[2].z = zstart +i; /* Data for vertex 3 */
bpoly->vert[2].data = 10.0 * (i + 2.0);

bpoly = BOP_NEXT_POLY (bp, bpoly);
}
bop_mrs_write(bpoly_start, n_triangles, bp); /* Ship it!! */
bop_mrs_close(bp); /* Close connections */

}

13

INTENTIONALLY LEFT BLANK.

14

5. REFERENCES

DDN Network Information Center. XDR: External Data Representation Standard, RFC-1014, Menlo
Park, CA, June 1987.

Dykstra, P. C. "The BRL-CAD Package, An Overview." Ballistic Research Laboratory, Aberdeen
Proving Ground, MD, October 1988.

Moss, G. S. "The ‘Igt’ Lighting Model." Ballistic Research Laboratory, Aberdeen Proving Ground, MD,
October 1988.

Muus, M. J. "Workstations, Networking, Distribuicd Graphics, and Parallel Processing." Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, October 1988.

15

INTENTIONALLY LEFT BLANK.

16

No. of
Copies Organization

2 Administrator
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145

1 Commander
U.S. Army Materiel Command
ATTN: AMCAM
5001 Eisenhower Ave.
Alexandria, VA 22333-0001

1 Director
U.S. Army Research
ATTN: AMSRL-OP-SD-TA,
Records Management
2800 Powder Mill Rd.
Adelphi, MI> 20783-1145

3 Director
U.S. Ammy Research
ATTN: AMSRL-OP-SD-TL.,
Technical Library
2800 Powder Mill Rd.
Adelphi, MD 20783-1145

1 Director
U.S. Ay Research
ATTN: AMSRL-OP-SD-TP,

Technical Publishing Branch

2800 Powder Mill Rd.
Adelphi, MD 20783-1145

2 Commander
U.S. Army Armament Research,

Development, and Engineering Center

ATTN: SMCAR-TDC
Picatinny Arsenal, NJ 07806-5000

1 Director
Benet Weapons
U.S. Army Amament Research,

Development, and Engineering Center

ATTN: SMCAR-CCB-TL
Watervliet, NY 121894050

1 Director

1.S. Army Advanced Systems Research

and Analysis Office (ATCOM)
ATTN: AMSAT-R-NR, M/S 219-1
Ames Research Center
Moffets Field, CA 94035-1000

17

No. of

Copies Organization

1

Commander

U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

Commander

U.S. Army Tank-Automotive Command
ATTN: AMSTA-JSK (Armmor Eng. Br.)
Warren, Ml 48397-5000

Director

U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR

White Sands Missile Range, NM 88002-5502

Commandant

U.S. Army Infantry School
ATTN: ATSH-WCB-O

Fort Benning, GA 31905-5000

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: AMSTE-TC

Dir, USAERDEC
ATTN: SCBRD-RT

Cdr, USACBDCOM
ATTN: AMSCB-CII

Dir, USARL
ATTN: AMSRL-SL-I

Dir, USARL
ATTN: AMSRL-OP-AP-L

No. of

Covies Organizati

1

1n

Computer Sciences Corporation
ATTN: Dr. David Brown
3160 Fairview Park Dr,

Mail Code 265

Falls Church, VA 22042

2 Provin

Dir, USARL
ATTN: AMSRL-CI, William Mermagen
AMSRL-CI-A, Harold Breaux
AMSRL-CI-AC,
John Grosh
Phillip Dykstra
Jerry Clarke
Deborah Thompson
Jennifer Hare
Eric Mark
Richard Angelini
Kathy Burke
AMSRL-CI-C, Walter Sturek

18

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a « - .inuing effort 10 improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our effons.

1. ARL Report Number __ ARL~CR-172 Date of Repon September 1994

2. Date Report Received

3. Does this repont satisfy a need? (Comment on purpose, related project, or other area of interest for
which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of
ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,
operating costs avoided, or efficiencies achieved, e!c? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reporis? (Indicate
changes to organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

Postage will be paid by addresses

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-AP-L

Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
N THE

UNITED STATES

